A Reinforcement Learning Approach to Virtual Machines Auto-configuration

Jia Rao, Xiangping Bu, Cheng-Zhong Xu
Le Yi Wang and George Yin

Wayne State University
Detroit, Michigan
http://www.cic.eng.wayne.edu

Why VM Autoconfiguration?

- Server consolidation is a primary usage of virtualization to reduce TCO
- In cloud systems, virtual machines need to be configured on-demand, in real time
- VMs need to be reconfigured dynamically
 - Created from template
 - Migrated to a new host
 - Resource demands/supplies vary with
Challenges in Online Autoconfig

- A rich set of configurable parameters
 - CPU, memory, I/O bandwidth, etc
- Heterogenous applications in the same physical platform
 - Hungry for different types of resources
- Performance interference between VMs
 - Centralized virtualization layer
- Delayed effect of reconfiguration
- Scale and real-time requirements make it even harder

Performance Interference

- Balanced configurations

<table>
<thead>
<tr>
<th>WLoad</th>
<th>weight</th>
<th>vcpu</th>
<th>mem</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC-W</td>
<td>256</td>
<td>2</td>
<td>0.5GB</td>
</tr>
<tr>
<td>TPC-C</td>
<td>256</td>
<td>1</td>
<td>1.5GB</td>
</tr>
<tr>
<td>SPECweb</td>
<td>512</td>
<td>2</td>
<td>0.5GB</td>
</tr>
</tbody>
</table>

Xen 3.1
Intel server
2-socket, 4-core, 8GB
Performance Interference (cont')

- Config-1: move 1G mem from TPCC to TPCW

Perf Interference (cont')

- Load-1: Input of TPC-W from browsing-mix to ordering-mix
Delayed Effect of Reconfiguration

- Reconfig takes effect after certain delays
- TPCC benchmark on two VMs of same conf, except mem

![Graph]

Problem Statement

- For VMs to be run on the same physical platform, automate the resource (re)configuration process:
 - Optimize system-wide perf (utility func) under individual SLA constraints.
 - SLA w. r.t. throughput or response time
- Multi-resources
 - CPU time (weighted scheduling in Xen), #virtual CPUs, Memory
- Work-conserving in resource allocation
Related Work

- [Wildstrom08] Regression based value est for memory
 - Single memory resource, supervised learning, not adaptive
- [Soror08] Greedy search based config enumeration for database workloads
 - Single CPU resource, assumes independent calibration of different resources
- [Padala07, Padala09] Control theory based alloc of resources (CPU, i/o bw)
 - Assumes no interference between VMs due to the use of non-work-conserving mode
 - Delayed effect of memory config is not considered

Our Contribution

- A reinforcement learning approach for online auto-configuration of multiple resources (includes memory)
- Consideration of VM interferences in work-conserving mode
- Consideration of delayed effect in resource allocation
- Prototyped in a VCONF framework and tested in real world applications
Reinforcement Learning

- **Learning by interaction with env**
 - **State**: configuration of VMs (cpu, mem, time, etc)
 - **Action**: reconfiguration (increase/decrease/nop of resrc)
 - **Immediate reward**: w.r.t. response time or throughput

- **Learning Objective**
 - For a given state, find an action policy that would maximize long-run return

Reinforcement Learning (cont')

- An optimal policy π^* is to select the action a in each state s that maximizes cumulative reward r
 \[Q^{\pi^*}(s_t, a_t) = r_0 + \gamma r_1 + \gamma^2 r_2 + ... \quad (0 \leq \gamma < 1) \]

- An RL solution is to obtain good estimations of $Q(s_t, a_t)$ based on interactions: (s_t, a_t, r_{t+1})

- $Q(s_t, a_t)$ of each state-action pair is updated each time an interaction finishes:
 \[Q(s_t, a_t) = Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)] \]
RL for Autoconfiguration

- **State space:** \((\text{mem}_1, \text{weight}_1, \text{vcpu}_1, \ldots, \text{mem}_n, \text{weight}_n, \text{vcpu}_n)\)
- **Action set:** \(\text{Inc}, \text{Dec}, \text{and Nop} on each resource\)
- **Rewards:** summarized perf over hosting applications
 - Score each VM based on normalized perf

\[
\text{reward} = \begin{cases}
\prod_{i=1}^{n} w_i \times \text{score}_i & \text{if for all score, } > 0; \\
-1 & \text{otherwise}
\end{cases}
\]

\[
\text{score} = \frac{\text{thrpt} - \text{penalty}}{\text{ref}_{\text{thrpt}}} \\
\text{penalty} = \begin{cases}
0, & \text{if resp } \leq \text{SLA}; \\
\text{resp}, & \text{if resp } > \text{SLA.}
\end{cases}
\]

VCONF Architecture

- **VCONF resides in dom0**
- **Observes current state,** makes decision based on \(Q(s, a)\) table
- **Monitors VM perf and calculate rewards**
- **Updates corresponding entry in** \(Q(s, a)\) table
Adaptability and Scalability

- Trivial implementation would lead to poor adaptability and scalability

Adaptability
- Revise existing policy when environment changes
- Poor adaptability due to slow start

Scalability
- The size of the Q(s,a) table grows exponentially with the state variables

Model-based RL and Function Approx

- Build env models from collected traces
 - \((s_t, a_t) \rightarrow r_t\)
 - Batch update Q(s, a) using simulated interactions from the models
 - Continuously update the models with new traces
 - Model-based RL is more data efficient
 - Model reuse when similar resource demands detected
- Replace look-up table based Q with neural network based function approximation
Experimental Results

- **Settings**
 - SPECweb, TPC-C, TPC-W as applications
 - Xen vm ver3.1 on 2-socket quad-core CPU

- **Controlled environment**
 - A single instance of TPC-W
 - Two instances of TPC-W
 - Only CPU related resource considered

- **In-house Cloud testbed**
 - Three heterogeneous applications
 - All the three resources were considered

Single Application Auto-configuration

- **Optimizing application throughput**

 RL based approach leads to optimal configurations, but without adaptive policy, RL shows poor adaptability even in small scale problems
System-Wide Perf Optimization

- Two TPC-W apps run concurrently

The RL based approach achieves higher system wide throughput than trial-and-error method. More importantly, VCONF requires no human intervention.

VM Auto-configuration in Clouds

- Heterogeneous VMs
- Large problem size
 - More VMs, more resources considered

<table>
<thead>
<tr>
<th>Workload</th>
<th>TPC-W</th>
<th>TPC-C</th>
<th>SPECweb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload-1</td>
<td>600</td>
<td>50 warehouses, 10 terminals</td>
<td>800 banking</td>
</tr>
<tr>
<td>Workload-2</td>
<td>600</td>
<td>50 warehouses, 10 terminals</td>
<td>800 banking</td>
</tr>
<tr>
<td>Workload-3</td>
<td>600</td>
<td>50 warehouses, 1 terminals</td>
<td>800 banking</td>
</tr>
<tr>
<td>Workload-4</td>
<td>600</td>
<td>50 warehouses, 10 terminals</td>
<td>200 banking</td>
</tr>
</tbody>
</table>
Coordinated Auto-Reconfiguration

![Graph showing throughput and 80% to 100% of max perf]

Conclusion

- **VCONF** shows the applicability of RL algorithms in VM auto-configuration
 - RL-based agent is able to obtain optimal (near-optimal) policies in small scale problems
 - In clouds with a large problem size, model-based RL shows better adaptability and scalability
- **Future work**
 - Consider more resources, such as I/O, shared cache
 - Integrate migration as an additional dimension in the RL framework
- **Auto-configuration of appliances in clouds** [see ICDCS’09]
Thank you!

Questions?

Cloud and Internet Computing Laboratory
Wayne State University, Michigan
http://cic.eng.wayne.edu

Cheng-Zhong Xu, czxu@wayne.edu